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NONEXISTENCE CONDITIONS OF A SOLUTION
FOR THE CONGRUENCE zf + .-+ 2% = N (mod p")

HIROSHI SEKIGAWA AND KENJI KOYAMA

ABSTRACT. We obtain nonexistence conditions of a solution for of the con-
gruence 2§ + - + 2% = N (mod p"), where k > 2, s > 2 and N are inte-
gers, and p' is a prime power. We give nonexistence conditions of the form
(s, N mod p™) for k =2, 3, 4, 5, 7, and of the form (s,p™) for k = 11, 13, 17,
19. Furthermore, we complete some tables concerned with Waring’s problem
in p-adic fields that were computed by Hardy and Littlewood.

1. INTRODUCTION

It is well known that there is no solution to the Diophantine equation x® + 3> +
z3 = n where n = £4 (mod 9) [6]. Furthermore, if n = 2 (mod 7), then there is
no solution such that z =3, 5, 6 (mod 7). In this paper, we consider more general
congruences and their conditions for nonexistence of a solution. The analysis and
computer search is not only interesting in itself, but is also useful for some number
theoretic sieves that efficiently solve some Diophantine equations [5].

Here, we discuss nonexistence conditions of a solution for the following congru-
ence:

(1) ¥+ 428 =N (modp"),

where k > 2, s > 2 and N are integers, and p™ is a prime power.

As described in Section 4, for a sufficiently large p that depends on k (we can
compute the bound), we can completely describe whether there exists a solution
for the congruence (1) through theoretical analysis. Therefore, we consider the
following problem.

Problem. For a given integer k£ > 2, find all integers s > 2 and prime powers p"
(we are interested in the least n for each pair (s, p)) such that the congruence (1)
has no solution for an integer N. In addition, find all the values of N mod p™.

After the preliminary Section 2, we consider some special cases in which the
nonexistence conditions can be obtained through the theoretical analysis in Sec-
tion 3. We will show some theoretical results that our search algorithm depends
on to obtain all nonexistence conditions in Section 4. Using these results, we de-
scribe our search algorithm in Section 5. In Section 6, by theoretical analysis and
computer search, we will show the nonexistence conditions of a solution for the
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congruence (1) of the form (s, N mod p™) for k = 2, 3, 4, 5, 7, and of the form
(s,p") for k = 11, 13, 17, 19. Finally in Section 7, using the computer search, we
consider Waring’s problem in p-adic fields; we complete some tables of Hardy and
Littlewood, and correct some of their computation errors in [4].

2. PRELIMINARIES

If k£ is a positive integer and p is a prime we can write k = p”dl, where d =
(k,p—1) and p{1. We write

_ {T +1, podd,
T+2, p=2.
If the congruence
(2) 2h 4 42 =M  (mod p¥)
has a primitive solution, then for all positive integers m, the congruence

¥4 42 =M (mod p™)

has a primitive solution. This statement follows from the fact that for an integer
a # 0 (mod p), if the congruence

¥ =a (mod p")
has a solution, then for all positive integers m, the congruence
(3) ¥ =a (mod p™)

has a solution. Notably, the congruence (3) has a solution for any integer a # 0
(mod p) and any positive integer m if and only if 7 =0 and d = 1.
The following lemmas are obvious.

Lemma 1. When k > 2, then k > v if and only if (k,p) # (2,2). The equality
holds if and only if (k,p) = (4,2).

Lemma 2. Suppose that (k,p) # (2,2), (4,2) and M # 0 (mod p¥). If the con-
gruence (2) has a solution, then it is primitive.

Lemma 3. Let p be a prime, k > 2, and (k,p) # (2,2), (4,2). If the congruence

¥4 428 =0 (mod p¥)
has no primitive solution, then for any integer t Z 0 (mod p), the congruence

k

442 =pYt (mod prtth)

has no solution.

3. NONEXISTENCE CONDITIONS THROUGH THEORETICAL ANALYSIS

In this section, we discuss the cases we can treat analytically. First, we can
obtain all nonexistence conditions for the following congruence:

(4) 4. 428 =N (mod 2").
Theorem 1.

1. When k is odd, the congruence x¥ + x5 = M (mod 2™) has a primitive solu-
tion for any integer M and any positive integer m.
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2. When k is even, the nonexistence conditions of a solution for the congru-
ence (4) are as follows:
(a) If k =2, then (2,3 mod 4), (3,7 mod 8).
(b) If k=4, then
(2,3 mod 4),
(.,jmod 8) for 3<i<6,i+1<j<7,
(i,jmod 16) for 7<i<14, i+1<j<15.
(c) If k #£ 2, 4, then
(2,3 mod 4),
(i, mod 2™) for3<m <wv, 2™l —1<i<2m —2
itl<j<om—1,
(2 — 1,2” mod 2vT1).
Proof. Suppose that k is even (when & is odd, Theorem 1 is clear).
When k& = 2,
(Z./2"Z)* = (Z,/8Z)? = {0 mod 8, 1 mod 8, 4 mod 8}.
Therefore, for s = 2, 3 the statement holds. For s = 4, we will show that the
congruence (4) has a solution for any integer N and any positive integer n. The
statement holds for N # 0 (mod 8) clearly. For N = 0 (mod 8), put N = 4°N’,
where 41 N’; then the congruence
224zl 4ai422=N (mod 8)
has a primitive solution, and therefore, for any n, the congruence
24224+ 224+22=N" (mod 2")
has a solution z; = a; (mod 2™). Therefore,
(2°01)? + (2°02)% + (2°a3)? + (2°a0)? = N (mod 2),
that is, Theorem 1 holds for k& = 2.
Next we consider the case k # 2. Note that
(Z)2"Z2)* 2 Z)2Z. & Z/2"Z
and
(22" Z)* = {0 mod 2", 1 mod 2"}.

The latter holds from the former and from 2* = 0 (mod 2*), which follows from
Lemma 1. Therefore, for s =2, 3, ..., 2¥ — 2, Theorem 1 holds.

When k& = 4, then 2¥ = 16. For any integer N and s = 15, we will show that
the congruence (4) has a solution for all positive integers n. The statement clearly
holds for N # 0 (mod 16). For N = 0 (mod 16), put N = 16°N’, where 16 { N,
the proof is similar to the case k =2, s =4 and N =0 (mod 8).

Finally we consider the case k # 2,4 and s = 2¥ —1. When N # 0 (mod 2¥), the
congruence (4) has a primitive solution for any integer N from Lemma 2; therefore
the congruence has a solution for any integer n. When N = 0 (mod 2¥), the
congruence has only a trivial solution, and the statement follows from Lemma 3. O

Next, we consider nonexistence conditions of a solution for the congruence
(5) a4 42k = (mod p")
for odd primes of p.
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Theorem 2. Let p be an odd prime.

1. When (k,p — 1) = p — 1, the nonezistence conditions of a solution for the
congruence (5) are as follows:

(i,jmodp) for2<i<p-2,i+1<j<p-1,
(i,j mod p™) for2<m <v, pm 1 —1<i<p™ -2,

i+1<j<pm™-1,
(p¥ —1,p*t mod p**1) for 1 <t <p—1.

2. In the case where (k,p—1) = (p—1)/2:
(a) If (p,7) = (3,0), the congruence z¥ + 2§ = M (mod 3™) has a primitive
solution for any integer M and any positive integer m.
(b) If (p,7) # (3,0), the nonexistence conditions of a solution for the con-
gruence (5) are as follows:

(i, mod p™) for2<m <wv, (p" 1 -1)/2<i< (p™ —3)/2,
i+1<j<p™—i—1.
Proof. Note that (Z/p*Z)* = Z/(p — 1)p" Z.
1. When (k,p—1)=p—1,
(Z/p"Z)* = {0 mod p”, 1 mod p"}
follows from the above fact and from p* = 0 (mod p”). Therefore, for s = 2, 3,
..., p¥ — 2, Theorem 2 holds. For s = p¥ — 1, the congruence

¥4 2¥ =M (mod p¥)

has a solution for any integer M. Therefore, from Lemma 2, for M # 0
(mod p¥), the solution is primitive. For M = 0 (mod p¥), the above con-
gruence has only a trivial solution, and when s = p”, the congruence has a
primitive solution. Therefore, the statement holds by Lemma 3.

2. When (k,p—1) = (p—1)/2, the proof is similar to the case (k,p—1) =p—1
except that

(Z/p*Z)* = {0 mod p¥, 1 mod p*, —1 mod p“},
and the congruence
¥+ 25 =0 (mod p")
has a primitive solution.

|

Remark 1. When (a) p = 2 or (b) p is odd and (k,p — 1) > (p — 1)/2, using
Theorems 1 and 2, we can find the minimal s such that the congruence

442 =M (mod p™)
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has a primitive solution for any integer M and any positive integer m as follows:

(a) k=2, then 4,
k=4, then 15,
k is even, # 2,4, then 2V,
k is odd, then 2,

(b) (kp—1)=p-1, then p”,
(p,7) = (3,0), then 2,

(kvp - 1) = (p - 1)/2v (p, T) # (3v0)» then (p“ - 1)/2

Hardy and Littlewood obtained these values in [4].

4. FINITENESS OF SEARCH FOR A FIXED k

In this section, we show three kinds of theoretical results that our search algo-
rithm depends on to obtain all nonexistence conditions for the congruence

24 4 2¥ =N (mod p").

The first kind of theoretical result shows that for a fixed k we can obtain all nonex-
istence conditions in a finite number of steps (Theorem 5 and Corollary 2). The
second kind is for efficiency (Proposition 1, Lemma 4 and Corollaries 1, 3 and 5).
The third kind is for Waring’s problem in p-adic integers, which is used in Section 7
(Theorem 6).

First, we observe solutions with modulus p. For s = 2, the following famous
theorem by Weil [7] clearly shows that the necessary search is finite.

Theorem 3 ([7]). Let C be a nonsingular projective curve over a finite field F,,.
Let L be the number of Fp-rational points, and let g be the genus of C'. Then,

|L —p—1] <2g/p.

From Theorem 3, we obtain the following corollary, which is used for the efficient
search.

Corollary 1. Let p be a prime and d be (k,p —1). We write k = p"dl, where
(p,1) =1, and write d = 27d’', where d' is odd. Put

e {d p=2orp=1 (mod2/*!),
0 otherwise.
If p satisfies the inequality
p+1—c>(dl—1)(dl —2)\/p,
then for any integer M the following congruence has a solution:
(6) 2 42k =M (mod p).

Proof. Tt is sufficient to prove the case M # 0 (mod p). Note that the congru-
ence (6) has a solution if and only if the congruence
e 42 =M (mod p)

has a solution. Apply Theorem 3 to the nonsingular projective curve over IF,, defined
by the equation

xcll + ydl _ ]\/fzdl =0.
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The genus of the curve is (dl — 1)(dl — 2)/2. The number of F,-rational points
whose z coordinates are 0 is d, if there exists a nontrivial solution for % + y¥ = 0
in F,,, and otherwise 0. Therefore, Corollary 1 follows from the next lemma. O

Lemma 4. The congruence z§ + x5 = 0 (mod p) has a nontrivial solution if and
only ifp =2 orp=1 (mod 2/*Y), where k = 27k and k' is odd.

The following corollary is also derived from Theorem 3, and it gives a computable
bound Ay such that for any prime p > Aj and any integer M, the congruence (6)
has a solution.

Corollary 2. Let k > 2 be an integer and let Ay be

% (k= 120k =2 20k — 1) + (k — 1)k — 2)/ Tk~ D20k 27 140k~ 1))

Then for any prime number p > Ay and for any integer M, the congruence (6) has
a solution. The order of magnitude of Ay, is k*.

Proof. In Corollary 1, ¢ < k and dl < k. U

For s > 3, we can obtain similar results. The following theorem corresponds to
Theorem 3 (see [8] for an example).

Theorem 4 ([8]). Let L be the number of solutions of the congruence
amz + . 4 aah =0 (mod p),
where p does not divide a1, ... ,as. Then
\L—p*~ ' < D(p—1)p**,
where D =T[;_,(d; — 1), d; = (ki,p —1).
The following two corollaries give conditions when the congruence
(7) e+ 2 =M (mod p)

has a solution for any integer M; Corollary 3 corresponds to Corollary 1 and Corol-
lary 4 corresponds to Corollary 2.

Corollary 3. Let k > 2 and s > 2 be integers, p be a prime, and d be (k,p —1).
If p satisfies the inequality

(8) P> (d=1) ((d-1p? +1),
then for any integer M, the congruence (7) has a solution.

Proof. 1t is sufficient to prove this for M # 0 (mod p). The congruence (7) has a
solution if and only if the congruence

9 b4 — M2F =0 (modp
s s+1

has a solution such that zs41 # 0 (mod p). From Theorem 4 the number of solu-
tions of the congruence (9) is at least

ps _ (d _ 1)s+1(p _ ]_)p(s—l)/Q7
and that of the congruence (9) such that ;.1 =0 (mod p) is at most

P d=1) (- Dp Y
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since the latter is equal to the number of solution of the congruence
e 4+ 28 =0 (mod p).
Therefore, if the following inequality holds, then the congruence (7) has a solution:
(10) P = (A=) (p—1)pl V2> p 4 (d = 1)°(p - 1)p*/*
Corollary 3 follows from the inequality (10). |
Corollary 4. Let k > 2 and s > 3 be integers, and let
Ap(s) = (k — 1)28/ (=D 2/ (s=1),

Then for any prime number p > Ar(s) and for any integer M, the congruence (7)
has a solution.

Proof. Since d < k and 1 < p'/2, if p satisfies the inequality

(11) p*? > (k= 1)*kp'/?,
then p satisfies the inequality (8) in Corollary 3. Corollary 4 follows from the
inequality (11). O

Remark 2. For small values of k and s, the bound Ag(s) is larger than Ag. The
pairs (k,s) such that the inequality Ag(s) > Ax holds are as follows: (a) (k,3)
where k > 2, (b) (3,4), (3,5), (3,6), (4,4).

The following two corollaries give conditions when the congruence
(12) 4+ +2F=0 (mod p)

has a nontrivial zero for an even k; Corollary 5 corresponds to Corollary 1 and
Corollary 6 corresponds to Corollary 2.

Corollary 5. Let k > 2 be even, s > 3 be an integer, p be a prime and d be
(k,p—1). If p satisfies the inequality

p*? = (d-1)*(p—-1) >0,
then for any integer M the congruence (12) has a primitive solution.
Proof. If the inequality
(13) Pl = (d—1)p* >0

holds, then the congruence (12) has a nontrivial solution since the number of solu-
tions for this congruence is not less than p*~* — (d — 1)*(p — 1)p*/?>~1. Corollary 5
immediately follows from the inequality (13). O

Corollary 6. Let k > 2 be even, s > 3 be an integer, and let By(s) be
(k —1)2%/=2) | Then for any prime number p > By(s), the congruence (12) has a
primitive solution.

Remark 3. The congruence
(14) ¥ 4k 42 =0 (mod p)

has a nontrivial solution if and only if the congruence z¥ + x5 = —1 (mod p) has a
solution. Therefore, if p > Ay, then the congruence (14) has a nontrivial solution.
The inequality Ax < Bg(s) holds if and only if £k > 4 and s = 3, 4.
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Next, we are concerned with higher prime powers p™. Thanks to the fact de-
scribed in Section 2, we must only examine n < v.

If s = 2 and p|k, then there exists an integer NV such that the congruence has no
solution with modulus p2.

Proposition 1. Let k > 2 be an integer. If a prime p divides k, then there exists
an integer N such that the congruence

(15) ¥ 42k =N (mod p?)
has no solution.

Proof. 1t is sufficient to prove that k = p. Since #{a” | a € Z/p*Z} = p,

2
H#{a? + 0 | a,b e Z/p*Z} < #{{a”, 0} | a,b € Z/p T} = ?%
<p® = #Z/p’L.

Therefore, there exists at least one N € Z/p®Z such that the congruence (15) has
no solution. O

With modulus p™, we need only examine s < k, thanks to the next theorem.

Theorem 5 ([4]). Suppose k is of the form k = p™dl, where d = (k,p—1), p {1
and p is an odd prime. If d < (p —1)/2, then for s > k the congruence

(16) 42 =M (mod p™)
has a primitive solution for any integer M and any paositive integer m.

Remark 4. Improvements of the form “if s > k¢ (¢ < 1) then the congruence has a
solution” exist: Birch [1], Dodson [3], Bovey [2], etc. However, their results contain
a condition “for all sufficiently large k.”

From Corollaries 4, 6 and Remarks 2, 3, we obtain the following theorem, which
is a supplement to Theorem 5.

Theorem 6. Let k >4 and 3 < s < k—1 be integers, and p be a prime. Then the
congruence (16) has a primitive solution for any integer M and any positive integer
m if the following condition is satisfied, where Ay, Ap(s) and By(s) are described
as in Corollaries 2, 4 and 6, respectively.

1. When k is odd, then
p> Ay for s =3,
p > Ap(s) for s > 4.

2. When k is even, then
p>A;=21412V/3=41.78... for (k,s) = (4,3),
p > Bui(s) for other (k, s).

Proof. First note that if p > Ay (resp. p > Ai(s) or p > By(s)) then p 1 k.
Therefore, we need only examine with modulus p whether the congruence has a
primitive solution for any integer M.

When £k is odd, the congruence has a nontrivial zero even if s = 2. Therefore,
Theorem 6 follows from Corollary 4 and Remark 2.
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When £k is even, first we will show that in the range 3 < s < k — 1 the inequality
Ar(s) < Bg(s), i.e., the inequality

Ay(s) ( Es—2 >‘3/(5*1)(5*2)

(7 Bi(s) ~ \ (k-1

holds. But this follows from the following inequalities:
LA U SRS S RS U PR B S
(k—1)s k2 k—1) — k2 E—1 k2 =16 =

Therefore, by Corollaries 4, 6 and Remark 3, Theorem 6 holds. |

<1

5. ALGORITHM

Using the results in Section 4, we will show that for a fixed k, we can obtain all
nonexistence conditions for the congruence

(18) ¥+ 428 =N (mod p")
in a finite number of steps. Note that if p{ k and (k,p—1) = 1, then the congruence
o 42k =M  (mod p™)

has a primitive solution for any M and m. Therefore, we only examine primes p
such that plk or d = (k,p— 1) > 1.

Algorithm (finding all nonexistence conditions).

Input: An integer k > 2.
Output: All nonexistence conditions for the congruence (18).

1. For p = 2 and odd primes p such that d > (p — 1)/2, we completely deter-
mine the nonexistence conditions of a solution for the congruence (18) from
Theorems 1 and 2.

2. For other primes p, we need only examine s < k from Theorem 5.

(a) The number of odd primes p that satisfy p|lk and 1 < d < (p—1)/2 is
finite, and it is sufficient to examine whether the congruence (18) has
a solution in the range n < v for such a prime p, using Lemmas 3, 4,
Proposition 1, and Corollaries 1, 3, 5, or by a computer search.

(b) There are an infinite number of odd primes p such that pfk and 1 < d <
(p — 1)/2, by Dirichlet’s Theorem. Since v = 1 for these p, we need only
examine whether the congruence

(19) 24 4= N (mod p)

has a primitive solution (higher powers of p™ are not necessary).

For any prime p > Ay and any integer N, the congruence (19) has a
solution. When p t N the solution is primitive from Lemma 2.

Suppose that p > A and p|N. When s > 2 the congruence (19) has a
primitive solution (set s = 1). When s = 2 we completely determine
whether (19) has a primitive solution from Lemma 4. For primes p where
(19) has no primitive solution, we completely determine the values N mod
p? so that the congruence ¥ + 25 = N (mod p?) has no solution from
Lemma 3.

Therefore, we must only examine s < k and odd primes p that satisfy p <
Ag,ptkand 1 <d< (p—1)/2 to determine whether the congruence (19)
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has a primitive solution using Corollaries 3 and 5, or by a computer
search.

We illustrate the algorithm when k& = 5.

Example (k = 5). We examine primes p such that p|5 or d = (5,p — 1) > 1; the
latter condition is equivalent to p = 1 (mod 10).

1. Among the above primes, 11 is the only one that satisfies d > (p — 1)/2.
From Theorem 2, we completely determine the nonexistence conditions of a
solution for the congruence (18).

2. For other primes, we must only examine s < 5.

(a) 5 is the only prime that divides k. Note that v = 2 for p = 5. Since
a® = a (mod 5) for any a, the congruence (19) has a solution for any
s > 2 and any integer N. When s = 2, there exists an integer N such
that the congruence

2+ 25 =N (mod 5%)
has no solution, by Proposition 1. We search for them and obtain N = 3,

4, 5,9, 10, 12, 13, 15, 16, 20, 21, 22 mod 52. When s = 3, for the above
values N we find that the congruence

i + 25+ a3 =N (mod 5?)
has a primitive solution by a computer search.

(b) Since the bound As is 76 + 244/10 = 151.89..., the primes we must
examine are 31, 41, 61, 71, 101, 131, 151. Since 5 is odd, the congruence

28 4+25 =M (mod p)
has a primitive solution for any integer M and any prime p > 151.
Set p = 31 and s = 2. The pair (k,p) = (5,31) does not satisfy the

condition in Corollary 1. Therefore, by a computer search, we find that
for N =3,8,9, 13, 14, 15, 16, 17, 18, 22, 23, 28 mod 31, the congruence

0 +25 =N (mod 31)

has no solution. Next set s = 3. Since (k, s,p) = (5,3, 31) does not satisfy
the condition in Corollary 3, we must examine whether the congruence

(20) : 2} + a5+ a23 =N (mod 31)

has a solution for the above values of N by a computer search. We confirm
that for these values of N, the congruence (20) has a primitive solution.
Similar procedures are carried out for p = 41, 61, 71, 101, 131, 151, and
we obtain the results described in Table 2.

6. TABLES DERIVED BY COMPUTER SEARCH

Using the algorithm in Section 5, for a fixed k, we obtained the nonexistence
conditions of the form (s, N mod p™). ’

Fortunately, for kK = 2 and 3, no computer search is necessary.

Case k = 2: The bound A; is 1. The nonexistence conditions (s, N mod p")

are:

(2,3 mod 4), from Theorem 1,

(2,pt mod p?) for p=3 (mod 4) and 1 <t <p— 1, from Lemmas 3 and 4,

(3,7 mod 8), from Theorem 1.
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Case k= 3: The bound Aj is 7.46.... The nonexistence conditions (s, N
mod p") are:

(2,imod 9), for 3 <7 <6, from Theorem 2,
(2,4 mod 7), for ¢ =3, 4, from Theorem 2,
(3,2mod 9), for ¢ =4, 5, from Theorem 2.

For other values of k, we completed tables by computer search. We obtained
the nonexistence conditions for 4 < k < 10 and all primes £ < 47. To save
space, we do not show all of the results; Tables 1, 2 and 3 show the nonexistence
conditions (s, N mod p™) for k = 4, 5 and 7, respectively. For k = 7, integers
N mod p™ are represented by means of a generator of the cyclic group ((Z/p"Z)*)"
and representatives of the cosets (Z/p"Z)* /((Z/p"Z)*)". TFor example, the first
row means the congruence

el + 2l =N (mod 7?)

has no solution for N = 31°¢ (mod 72), where 1 <4 < 6 and t = 3, 9, 27, 43.

Table 4 shows the nonexistence conditions (s, p™) for k = 11, 13, 17, 19. To save
space, this table shows only the maximal s for each pair (k,p™). For example, the
row “k =11, s = 3, p" = 112, 89” means there exist integers N; and N, such that
the congruences

it 4+ 4+ 2t =N (mod 11?)
o1t 4+ 2t =Ny (mod 89)
have no solution for s < 3.
The computer search was carried out on a DEC Alpha Server 4100/5/400 (400
MHz, 256 MB memory). We show the CPU times for some values of k: less than
0.1 seconds for k& = 7, approximately 40 seconds for k£ = 19, approximately 20

minutes for & = 29, approximately 2 hours for k£ = 37, and approximately 13 hours
for k = 47.

TABLE 1. Nonexistence conditions (s, N mod p") for k = 4.

l s I N mod p" [
27,8, 11 mod 13

6, 7, 10, 11 mod 17
4,5,6,9, 13, 22, 28 mod 29
ptmod p* (1 <t <p—1)*
37t mod 372 (1 <t < 36)

3| 29t mod 292 (1 <t < 28)

* p=17,11,19, 23, 31

Ag=41.78...,
mod 27 : see Theorem 1,
mod 3", mod 5" : see Theorem 2,

mod p? for p > 43, =3 (mod 4): see Lemmas 3 and 4,
mod p? for p > 53, =5 (mod 8): see Lemmas 3 and 4.
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TABLE 2. Nonexistence conditions (s, N mod p™) for k = 5.

N mod p™ |
3,4,5,9,10, 12, 13, 15, 16, 20, 21, 22 mod 52
3, 8,9, 13, 14, 15, 16, 17, 18, 22, 23, 28 mod 31
7, 16, 19, 20, 21, 22, 25, 34 mod 41
4,5,6,9, 17, 23, 38, 44, 52, 55, 56, 57 mod 61

mod 11™: see Theorem 2.

TABLE 3. Nonexistence conditions (s, N mod p") for k = 7.

s N mod p™
generator of | representatives of
((Z/p"2)*)" | (Z/p"2)* |((Z/p"Z)*)

2 | 31 mod 72 3,9, 27, 43 mod 72
12 mod 29 3, 4, 6, 8 mod 29
37 mod 43 3,9, 27, 28 mod 43
14 mod 71 7 mod 71
40 mod 113 | 81 mod 113
28 mod 127 | 116 mod 127

3 | 31 mod 72 9, 27 mod 72
12 mod 29 8 mod 29
37 mod 43 27 mod 43

TABLE 4. Nonexistence conditions (s, p™) for £ = 11, 13, 17, 19.

Lk [s] " |
[11 ] 27199, 331, 353, 419, 463, 617

112, 89

67

132, 131, 157, 313, 443, 521, 547, 599, 677, 859, 911, 937, 1171
79

53

239, 307, 409, 443, 613, 647, 919, 953, 1021, 1123, 1259, 1327,
1361, 1531, 1667

172, 137

103

192, 457, 571, 647, 761, 1103, 1217, 1483, 1559, 1597, 1787,
2053, 2129, 2357, 2927

3| 191, 229, 419

mod 23" for k = 11: see Theorem 2.

13

DO B N W

17

ot W

19 |2
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7. WARING’S PROBLEM IN p-ADIC FIELDS

Through theoretical analysis and computer search, for several values of k we
obtained the nonexistence conditions of a solution for the congruence

¥+ 4 2F =N (mod p").

These results are closely related to Waring’s problem in p-adic fields, namely, the
problem of representing any p-adic integer by a sum of s kth powers of p-adic
integers. The problem is equivalent to finding a primitive solution of the congruence

(21) 4 2F =M (mod p¥)

for any rational integer M, except in the case (k,p) = (4,2) (the least s such
that any 2-adic integer can be represented as s 4th powers of 2-adic integers is 15,
however, the least s such that the congruence (21) has a primitive solution for any
rational integer M is 16). We define the number I',(k) as the least positive integer
s such that the congruence (21) has a primitive solution for all rational integers
M. The number I'(k) is defined as max{I',(k)}, where p runs through all prime
numbers.

We utilize the algorithm described in Section 5 for computing I'(k). Obtaining
the value of I'(k) is easier than obtaining all nonexistence conditions for k, since
the bound, up to which we must examine primes p, decreases whenever we find a
prime p such that T'y(k) < I'y(k) for all primes ¢ < p. Significantly, if we find a
prime p such that I',(k) > k in Step 1, then Step 2 is not necessary, by Theorem 5.

We illustrate how the bound decreases while computing I'(34). In Step 1, the
largest value of T'p(34) is 8 for p = 2. Since 8 <k = 34, by Theorem 6, we
must examine whether there exists a prime p < Bs4(8) = 11203.93... such that
I'p,(34) > 9 using Corollaries 3, 5 or by a computer search. The bound decreases
to B34(10) = 6255.82... when we find that I'193(34) = 10. Note that we must
examine primes p < Azy = 115201.99... to obtain all nonexistence conditions for
k = 34.

In [4], Hardy and Littlewood considered the number I'(k); however, their no-
tations were slightly different from ours. Tables 5 and 6 correspond to Tables 1
and 3 in [4], respectively. In the row in Table 5 and in the column in Table 6, “p”
refers to the least p such that I'y(k) = I'(k). There were undecided results (e.g.,
the entry of I'(37) was “> 9”) and several errors in [4]. The symbols “x” and “}”
refer to the undecided results and errors in [4], respectively. It took approximately
6 seconds to obtain Table 5. Note that it took a much longer time to obtain all
nonexistence conditions for a single value of k (k = 29, as described in Section 6,

TABLE 5. I'(k) for 3 < k < 36 (corresponding to Table 1 in [4]).

k 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19
'k 4 16 5 9 4 32 13 12 11 16 6- 14 15 64 6 27 4
| P 3 211 3 7 2 3 523 253 29 31 2 103 3 7191

E |20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

T'(k) |25 24 23 23 32 10 26 40 29 29 31 5 128 33 10 35 137

| p | 5 7 2347 2 75 53 3 29 59 31 373 2 67 103 71 137
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TABLE 6. I'(k) for 37 < k < 200 (corresponding to Table 3 in [4]).

k Tk | p || & [Tk p k |Tk)| p | k [Tk p
37 9| 149 78| 84| 13| 119| 119| 239 || 160 | 128 2
38| *90229( 79| *13| 317 120| 120 | 241 161 | *23| 47
39| 39| 79| 80| f64 2| 121 | *16| 727 || 162 | 7243 3
40 | 41| 41| 81| 121 3| 122] *21| 367163 | *21| 653
41| 41| 83| 82| 83| 83| 123| *41| 83| 164 *83| 83
42| 49| 7| 83| 83| 167|124 | *20| 373|165 165 | 331
43| T12173 | 84| *49 7| 125| 125 | 251 166 | 167 | 167
44 | 44| 89| 85| *7|1021 (126 | 127 | 127 || 167 | *5| 2339
45| *15| 31| 86| 86| 173|127 | *21| 509 || 168 | 168 | 337
46| 47| 47| 87| *29| 59| 128| 512 21169 | *25| 677
47| *10 | 283 | 88| 89| 89| 129 | f*12| 173 170 | *20 | 1021
48| 64| 2| 89| 89| 179|130 | 131 | 131|171 |*180| 19
49| *13|197| 90| 90| 181 131| 131| 263 | 172 | 173 | 173
50| f62| 5| 91| *13| 547 132 *67| 67| 173 | 173 | 347
51| 51(103| 92| *47| 47|/ 133 | *7|1597 | 174 | 174| 349
52| 53| 53| 93| *17| 373 |[134| 134 | 269 || 175| *35| 71
53| 53 (107 | 94| *18| 283 |[135| 135 | 271 | 176 | T176 | 353
54| 81| 3| 95| 95| 191|136 | 144 | 17| 177| *21| 709
55| 60| 11| 96| 128 21| 137 | *17| 823 178 | 179 | 179
56 | 56| 113 | 97| *16| 389 | 138 | 139 | 139|179 | 179 | 359
57| *141229| 98| 98| 197|139 | *18 | 557 || 180 | 181 | 181
58| 59| 59| 99| 99| 199 || 140 | 140 | 281 | 181 | *19 | 1087
59| 15709 || 100 | 125 51| 141 ] 141 ] 283 182| *26| 53
60| 61| 61| 101 | *16| 607 | 142 | *19 | 569 | 183 | 183 | 367
61| *11|367 | 102 | 103 | 103 |/ 143 | *18| 859 || 184 | *47 | 47
62| *12|373| 103 | *16| 619 || 144 | *73| 73| 185| *9| 149
63| 63|127| 104| "53| 53|/ 145| *29| 59| 186| 186 | 373
64| 256 | 2105 | 105| 211 { 146 | 146 | 293 | 187 | *22 1123
65| 65|131| 106 | 107 | 107 || 147 | 171 7| 188 | *22| 1129
66| *67| 67107 | *15| 643 | 148 | 149 | 149 || 189 | 189 | 379
67 | *12|269 || 108 | *109 | 109 || 149 | *8{ 1193 || 190 | 191 | 191
68| 68|137(109| *6|1091 | 150 | 151 | 151 || 191 | 191 | 383
69| 69139 110 | 121 | 11151 | *19| 907 || 192 | 256 2
70| 71| 71| 111| 111 | 223 | 152 | *32 211193 | *21| 773
71| *6]569 || 112| 113 | 113|153 | 153 | 307 ( 194 | 194 | 389
72| 73| 73| 113| 113 | 227 | 154 | *23| 23| 195| *65| 131
73| *16|293 || 114 | 114 | 229|155 | 155| 311 | 196 | *197 | 197
TA| 741|149 | 115 | *23| 47| 156 | 169 | 13| 197 | *5|3547
75| 75| 151 | 116 | 116 | 233 | 157 | 17| 1571 || 198 | 199 | 199
76| *16 | 2| 117 | *39| 79| 158 | 158 | 317 (199 | *25| 797
77| *14|463 | 118 | ™17 | 709 | 159 | 53| 107 | 200 | 200 | 401
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took approximately 20 minutes). The results in Table 6 were obtained in approxi-
mately 33 hours. Almost all CPU time was for kK = 167 and 197 (approximately 9
hours for k = 167 and approximately 23 hours for k = 197).

Hardy and Littlewood proved that I'(k) > 3. After declaring they could not
prove that I'(k) > 4, although no case of I'(k) = 3 was known, they wrote (p. 539
in [4]):

We have explored the possibilities I'(k) = 3 and I'(k) = 4 in the range
2 < k < 3000. Our results are that I'(k) > 3 in all cases; and I'(k) > 4
except for k = 2, 3, 7, 19, for which it is 4, and possibly (but very
improbably) for & = 1163, 1637, 1861, 1997, 2053.

Therefore, we computed I'(k) for k = 1163, 1637, 1861, 1997, 2053. In approxi-
mately one minute, we obtained

I'37217(1163) = 6, T62207(1637) =7, T'74441(1861) = 5,
Tg7869(1997) =5, T'94439(2053) = 5,

where the primes p = 37217, 62207, 74441, 87869, 94439 were the least primes
satisfying the condition p = 1 (mod k) for £k = 1163, 1637, 1861, 1997, 2053,
respectively. That is, I'(k) > 6, 7, 5, 5, 5 for k = 1163, 1637, 1861, 1997, 2053, and
we confirmed that I'(k) > 4 in the range 19 < k& < 3000.
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