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NONEXISTENCE CONDITIONS OF A SOLUTION 
FOR THE CONGRUENCE x4k + + Xk N (mod pn) 

HIROSHI SEKIGAWA AND KENJI KOYAMA 

ABSTRACT. We obtain nonexistence conditions of a solution for of the con- 
gruence xk + + xk -N (mod pfl), where k > 2, s > 2 and N are inte- 
gers, and p" is a prime power. We give nonexistence conditions of the form 
(s, N mod p?) for k = 2, 3, 4, 5, 7, and of the form (s,p") for k = 11, 13, 17, 
19. Furthermore, we complete some tables concerned with Waring's problem 
in p-adic fields that were computed by Hardy and Littlewood. 

1. INTRODUCTION 

It is well known that there is no solution to the Diophantine equation x3 + y3 + 

Z3 = -t where n = ?4 (mod 9) [6]. Furthermore, if nr _ 2 (mod 7), then there is 
no solution such that x- 3, 5, 6 (mod 7). In this paper, we consider more general 
congruences and their conditions for nonexistence of a solution. The analysis and 
computer search is not only interesting in itself, but is also useful for some numnber 
theoretic sieves that efficiently solve some Diophantine equations [5]. 

Here, we discuss nonexistence conditions of a solution for the following congru- 
ence: 

(1) xk + +xk N (mod pn), 

where k > 2, s > 2 and N are integers, and pn is a prime power. 
As described in Section 4, for a sufficiently large p that depends on k (we can 

compute the bound), we can completely describe whether there exists a solution 
for the congruence (1) through theoretical analysis. Therefore, we consider the 
following problem. 

Problem. For a given integer k > 2, find all integers s > 2 and prime powers p"' 
(we are interested in the least n- for each pair (s, p)) such that the congruence (1) 
has no solution for an integer N. In addition, find all the values of N mod pfl. 

After the preliminary Section 2, we consider some special cases in which the 
nonexistence conditions can be obtained through the theoretical analysis in Sec- 
tion 3. We will show some theoretical results that our search algorithm depends 
on to obtain all nonexistence conditions in Section 4. Using these results, we de- 
scribe our search algorithm in Section 5. In Section 6, by theoretical analysis and 
computer search, we will show the nonexistence conditions of a solution for the 
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congruence (1) of the form (s, N mod p') for k = 2, 3, 4, 5, 7, and of the form 
(S,pn) for k = 11, 13, 17, 19. Finally in Section 7, using the computer search, we 
consider Waring's problem in p-adic fields; we complete some tables of Hardy and 
Littlewood, and correct some of their computation errors in [4]. 

2. PRELIMINARIES 

If k is a positive integer and p is a prime we can write k = pTdl, where d 
(k, p - 1) and p t 1. We write 

J + 1, podd, 

iT+2, p=2. 

If the congruence 

(2) xk + + x k M (mod pw) 

has a primitive solution, then for all positive integers m, the congruence 

x4?+ + xkM (modpm) 

has a primitive solution. This statement follows from the fact that for an integer 
a # 0 (mod p), if the congruence 

x -a (mod pw) 

has a solution, then for all positive integers m, the congruence 
k= (3) x -a (nod pm) 

has a solution. Notably, the congruence (3) has a solution for any integer a 7 0 
(mod p) and any positive integer m if and only if T = 0 and d = 1. 

The following lemmas are obvious. 

Lemma 1. When k > 2, then k > v if and only if (k,p) 74 (2,2). The equality 
holds if and only if (k, p) = (4, 2). 

Lemma 2. Suppose that (k,p) 74 (2,2), (4,2) and M # 0 (mod p'). If the con- 
grutence (2) has a solution, then it is primitive. 

Lemma 3. Let p be a prime, k > 2, and (k, p) // (2, 2), (4, 2). If the congruence 

x *k+ +xk _ (modpw) 

has no primitive solution, then for any integer t # 0 (mod p), the congruence 

xk + + x k put (rmod pw+l) 

has no solution. 

3. NONEXISTENCE CONDITIONS THROUGH THEORETICAL ANALYSIS 

In this section, we discuss the cases we can treat analytically. First, we can 
obtain all nonexistence conditions for the following congruence: 

(4) xi + + xs- N (mod 27). 

Theorem 1. 
1. When k is odd, the congruence x + xk = M (mod 2") has a primitive solu- 

tion for any integer M and any positive integer m. 
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2. When k is even, the nonexistence conditions of a solution for the congru- 
ence (4) are as follows: 
(a) If k = 2, then (2,3 mod 4), (3,7 mod 8). 
(b) If k = 4, then 

(2,3 mod 4), 
(i, j mod 8) for 3 < i < 6, i + 1 < j < 7, 
(i,j mod 16) for 7 <i<14, i+1< j< 15. 

(c) If k 4 2, 4, then 

(2,3 mod 4), 
(i,j mod 2m) for 3 < m < v, 2m-1 - I < i < 2m - 2, 

i + 1 < j < 2m - 1, 

(2 - 1, 2W mod 2W+1). 

Proof. Suppose that k is even (when k is odd, Theorem 1 is clear). 
When k = 2, 

(712v )k = (2/82)2 {0 mod 8, 1 mod 8, 4 mod 8}. 

Therefore, for s = 2, 3 the statement holds. For s = 4, we will show that the 
congruence (4) has a solution for any integer N and any positive integer n. The 
statement holds for N # 0 (mod 8) clearly. For N 0 (mod 8), put N 4eN', 
where 4 t N'; then the congruence 

x12?+ x2?+ X2 + X _ N' (mod 8) 

has a primitive solution, and therefore, for any n, the congruence 

X2 X2?+ x2+ X2-N' (mod 27) 

has a solution xi ai (mod 27). Therefore, 

(2ea,)2 + (2ea2)2 + (2ea3)2 + (2ea4)2 _ N (mod 27), 

that is, Theorem 1 holds for k = 2. 
Next we consider the case k + 2. Note that 

(2/2W2) 
x = 2/22 e 2/2T2 

and 

(Z/2Z) k = {0 mod 2", 1 mod 2"}. 

The latter holds from the former and from 2k 0 O (mod 2W), which follows from 
Lemma 1. Therefore, for s = 2, 3, ... , 2v - 2, Theorem 1 holds. 

When k = 4, then 2" = 16. For any integer N and s = 15, we will show that 
the congruence (4) has a solution for all positive integers n. The statement clearly 
holds for N # 0 (mod 16). For N 0 (mod 16), put N = 16eN', where 16 t N'; 
the proof is similar to the case k = 2, s = 4 and N 0 (mod 8). 

Finally we consider the case k 4 2, 4 and s = 2W - 1. When N # 0 (mod 2W), the 
congruence (4) has a primitive solution for any integer N from Lemma 2; therefore 
the congruence has a solution for any integer n. When N - 0 (mod 2W), the 
congruence has only a trivial solution, and the statement follows from Lemma 3. D 

Next, we consider nonexistence conditions of a solution for the congruence 

(5) xl + + xk -N (mod pn) 
for odd primes of p. 
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Theorem 2. Let p be an odd prime. 

1. When (k,p - 1) = p - 1, the nonexistence conditions of a solution for the 
congruence (5) are as follows: 

(i,j modp) for2 < i < p-2, i+ 1 < j < p-1, 
(i,j mod pm) for 2 < m < vi, p m-1 1 < i <pm -2, 

i+ 1 < j pm - 1, 

(p 1p"'t mod p1+1) for 1 < t < p -1 

2. In the case where (k, p - 1) = (p - 1)/2: 
(a) If (p, T) = (3, 0), the congruence xk + Xk M (mod 3m) has a primitive 

solution for any integer M and any positive integer m. 
(b) If (p, T) 74 (3, 0), the nonexistence conditions of a solution for the con- 

gruence (5) are as follows: 

(i, j mod p) for 2 < i < (p-3)/2, i + 1 < j < p-i-1, 
(i, j mod pm) for 2 < m < v, (pm-i - 1)/2 < i < (pm - 3)/2, 

i + 1 < j < pm -i- 1. 

Proof. Note that (2/p,72) x 2/(p -l)pr. 

1. When (k, p - 1) = p - 1, 

(7/pj/ )-)k {0 mod p', 1 mod p'} 

follows from the above fact and from pk 0 (mod p'). Therefore, for s 2, 3, 
-p - 2, Theorem 2 holds. For s = p' - 1, the congruence 

xi + + xk (mod p') 

has a solution for any integer MVI. Therefore, from Lemma 2, for M 0 0 
(mod p'), the solution is primitive. For M _ 0 (mod p'), the above con- 
gruence has only a trivial solution, and when s = p', the congruence has a 
primitive solution. Therefore, the statement holds by Lemma 3. 

2. When (k, p - 1) = (p - 1)/2, the proof is similar to the case (k,p - 1) = p - 1 
except that 

(Z/p,Z) k {0 mod p", 1 mod p", -1 mod p'}, 

and the congruence 

xlk+ X2 
k 

O (mocl p') 

has a primitive solution. 

Remark 1. When (a) p = 2 or (b) p is odd and (k,p - 1) > (p - 1)/2, using 
Theorems 1 and 2, we can find the minimal s such that the congruence 

xk + + x> k M (mod p") 
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has a primitive solutioln for any integer 3/f anld anly positive integer mr as follows: 

(a) k = 2, thell 4, 
k = 4, thell 15, 
k is even, 7 2,4, thenl 2", 
k is odd, thell 2, 

(b) (k,p - 1) p - 1, then p', 
(p, T) = (3, 0), then 2, 
(k, p- 1) = (p- 1)/2, (p, T) 74 (3, 0), then (p' - 1)/2. 

Hardy anlci Littlewoocd obtain:ed these values in [4]. 

4. FINITENESS OF SEARCH FOR A FIXED k 

In this section, we show three kinds of theoretical results that our search algo- 
rithm depends o01 to obtain all ilollexistenlce conlditionls for the congruence 

x + + xk_ N (mod pTh). 

The first kind of theoretical result shows that for a fixed k we canl obtain all lionex- 
istelice conditions in a fin:ite nunber of steps (Theorem 5 and Corollary 2). The 
second kinid is for efficienicy (Propositioii 1, Lemma 4 anlcI Corollaries 1, 3 alnd 5). 
The third kiici is for Waring's problemn ill p-acic ilitegers, which is used in Sectioni 7 
(Theorem 6). 

First, we observe solutions with modulus p. For s = 2, the followinig famous 
theorem by Weil [7] clearly shows that the necessary search is finite. 

Theorem 3 ([7]). Let C be a nonsingular projective cutrve over a finite field IF. 
Let L be the number of IF-rational points, and let g be the genuts of C. Then, 

IL-p-11 < 2g p. 

From Theorem 3, we obtain the following corollary, which is used for the efficient 
search. 

Corollary 1. Let p be a prime and d be (k,,p - 1). We write k pTdl, where 
(p, 1) = 1, and write d = 2 dd', where d' is odd. Put 

rd p = 2 or p -1 (mod 2.f-1), 
c - 

0 otherwise. 

If p satisfies the inequality 

p + 1-c > (dl-I)(dI-2) , 

then for any integer Al the following congruence has a solution: 

(6) x4 + X4 wA (mod p). 

Proof It is sufficient to prove the case MAY 0 0 (mod p). Note that the congru- 
ence (6) has a solution if anid only if the congruence 

xdl + x Adl _lA (miod p) 

has a solution. Apply Theorem 3 to the nllosingular projective curve o-ver 1Fp defined 
by the ecquation 

Xdl 4 ydl - AiZdil = o. 
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The genus of the curve is (dl - 1)(dl - 2)/2. The number of Fp-rational points 
whose z coordinates are 0 is d, if there exists a nontrivial solution for xdl + ydl = o 

in FP, and otherwise 0. Therefore, Corollary 1 follows from the next lemma. D 

Lemma 4. The congrutence xk + xk 0 (mod p) has a nontrivial solution if and 
only if p = 2 or p _ 1 (mod 2f+1), where k = 2f k' and k' is odd. 

The following corollary is also derived from Theorem 3, and it gives a computable 
bound Ak such that for any prime p > Ak and any integer M, the congruence (6) 
has a solution. 

Corollary 2. Let k > 2 be an integer and let Ak be 

2 ((k - 1)2(k - 2)2 + 2(k - 1) + (k - 1)(k - 2),/(k - 1)2(k- 2)2 +4(k-1) 

Then for any prime number p > Ak and for any integer Mf, the congruence (6) has 
a solution. The order of magnitude of Ak is k4. 

Proof. In Corollary 1, c < k and dl < k. D 

For s > 3, we can obtain similar results. The following theorem corresponds to 
Theorem 3 (see [8] for an example). 

Theorem 4 ([8]). Let L be the number of solutions of the congruence 

aixki + + a,XSk-< 0 (mod p), 

where p does not divide a1,... , a8. Then 

IL - pS ?< D(p -)p8/2- 

where D H=1(d. - 1), d. = (k.,p - 1). 

The following two corollaries give conditions when the congruence 

(7) xk+ + x- 
k M (mod p) 

has a solution for any integer M; Corollary 3 corresponds to Corollary 1 and Corol- 
lary 4 corresponds to Corollary 2. 

Corollary 3. Let k > 2 and s > 2 be integers, p be a prime, and d be (k, p - 1). 
If p satisfies the inequality 

(8) ps8/2 > (d -1)5 ((d- 1)pl /2 + 1) 

then for any integer MA, the congruence (7) has a solution. 

Proof. It is sufficient to prove this for M/f 0 0 (mod p). The congruence (7) has a 
solution if and only if the congruence 

(9) x + ...+x -Mx+1 _X O (mod p) 

has a solution such that x,+v 0 0 (mod p). From Theorem 4 the number of solu- 
tions of the congruence (9) is at least 

p5 _ (d - 1)8+1(p_ -)P(8-1)/2 

and that of the congruence (9) such that x8+1 0 (mod p) is at most 

ps-1 + (d - 1)8(p -_)p/2-1 
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since the latter is equal to the number of solution of the congruence 

xk + + xk _O (mod p). 

Therefore, if the following inequality holds, then the congruence (7) has a solution: 

(10) ps - (d - 1)s?l(p - 1)p(s-l)/2 > ps-l + (d - 1)S(p - 1)pS/2-l 

Corollary 3 follows from the inequality (10). D 

Corollary 4. Let k > 2 and s > 3 be integers, and let 

Ak(s) = (k _ 1)2s/(s-1)k2/(s-1). 

Then for any prime number p > Ak(s) and for any integer M, the congruence (7) 
has a solution. 

Proof. Since d < k and 1 < pl/2) if p satisfies the inequality 
(11l) ps!2 > (k - 1)skpl /2 

then p satisfies the inequality (8) in Corollary 3. Corollary 4 follows from the 
inequality (11). D 

Remark 2. For small values of k and s, the bound Ak(s) is larger than Ak. The 
pairs (k,s) such that the inequality Ak(s) > Ak holds are as follows: (a) (k,3) 
where k > 2, (b) (3, 4), (3, 5), (3, 6), (4, 4). 

The following two corollaries give conditions when the congruence 

(12) xk + + x? k -0 (mod p) 

has a nontrivial zero for an even k; Corollary 5 corresponds to Corollary 1 and 
Corollary 6 corresponds to Corollary 2. 

Corollary 5. Let k > 2 be even, s > 3 be an integer, p be a prime and d be 
(k, p - 1). If p satisfies the inequality 

ps/2 - (d - 1)S(p - 1) > 0) 

then for any integer M the congruence (12) has a primitive solution. 

Proof. If the inequality 

(13) pS-1 - (d- 1)sps/21 > 0 

holds, then the congruence (12) has a nontrivial solution since the number of solu- 
tions for this congruence is not less than pS-l (d - 1)S(p - )p/2. Corollary 5 
immediately follows from the inequality (13). D 

Corollary 6. Let k > 2 be even, s > 3 be an integer, and let Bk(s) be 
(k - 1)2s/(s-2). Then for any prime number p > Bk(s), the congruence (12) has a 
primitive solution. 

Remark 3. The congruence 

(14) x4 + xk + xk 0 (mod p) 

has a nontrivial solution if and only if the congruence x? + -1 (mod p) has a 
solution. Therefore, if p > Ak then the congruence (14) has a nontrivial solution. 
The inequality Ak < Bk(s) holds if and only if k > 4 and s = 3, 4. 
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Next, we are concerned with higher prime powers p1'1. Thanks to the fact de- 
scribed in Section 2, we must only examine n < v. 

If s = 2 and plk, then there exists an integer N such that the congruence has no 
soluition with modulus p2. 

Proposition 1. Let k > 2 be an integer. If a prime p divides k, then there exists 
an integer N such that the congruence 

(15) xk x k N (mod p2) 

has no solution. 

Proof. It is sufficient to prove that k p. Since #{aP I a c Z/p2}= p 

#{aP + bP I a, b E Z/p2Z} < #{{a P, bP} I a, b E -/p2 = +2P 

< p2 = #7-/p 2z 

Therefore, there exists at least one N c Z/p2Z such that the congruence (15) has 
110 solution. D 

With modulus pfl, we need only examine s < k, thanks to the next theorem. 

Theorem 5 ([4]). Sutppose k is of the form k = pTdl, where d = (k,p - 1), p t I 
and p is an odd prime. If d < (p - 1)/2, then for s > k the congruence 

(16) xk + + xk _A (mod pTh) 

has a primitive solution for any integer A/I and any pQsitive integer tn. 

Remark 4. Improvements of the form "if s > kc (c < 1) then the congruence has a 
solution" exist: Birch [1], Dodson [3], Bovey [2], etc. However, their results contain 
a condition "for all sufficiently large k." 

From Corollaries 4, 6 and Remarks 2, 3, we obtain the following theorem, which 
is a supplement to Theorem 5. 

Theorem 6. Let k > 4 and 3 < s < k - 1 be integers, and p be a prime. Then the 
congruence (16) has a primitive solution for any integer AM and any positive integer 
mx if the following condition is satisfied, where Ak, Ak(s) and Bk(s) are described 
as M Corollaries 2, 4 and 6, respectively. 

1. When k is odd, then 
p > Ak for s -3, 
p > Ak(s) for s > 4. 

2. When k is even, then 
p > A4 = 21 + 12 = 41.78 ... for (k, s) = (4, 3), 
p > Bk(s) for other (k, s). 

Proof. First note that if p > Ak (resp. p > Ak(s) or p > Bk (s)) then p t k. 
Therefore, we need only examine with modulus p whether the congrueince has a 
primitive solution for any integer MI. 

When k is odd, the congruence has a nontrivial zero even if s = 2. Therefore, 
Theorem 6 follows from Corollary 4 and Remark 2. 
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When k is even, first we will show that in the range 3 < s < k - 1 the inequality 
Ak (s) < Bk(s), i.e., the inequality 

(17) Ak(s) (k - i)2/(s l)(s 2) 

holds. But this follows from the following inequalities: 

ks-2 I e e <1.k- 6 2 1 
(I + 

1 
5< 

1 
1+ < 

t 
< < 

(k - 1)s k2 k\-ki1) k2 k\ k -i) k2 - 16 
Therefore, by Corollaries 4, 6 and Remark 3, Theorem 6 holds. n 

5. ALGORITHM 

Using the results in Section 4, we will show that for a fixed k, we can obtain all 
nonexistence conditions for the congruence 

(18) xkj + + x k N (mod p') 

in a finite number of steps. Note that if p t k and (k, p- 1) = 1, then the congruence 

xk + k M (mod pm) x1 + 2 Mpm 

has a primitive solution for any M and m. Therefore, we only examine primes p 
such that pIk or d = (k, p - 1) > 1. 

Algorithm (finding all nonexistence conditions). 

Input: An integer k > 2. 
Output: All nonexistence conditions for the congruence (18). 

1. For p = 2 and odd primes p such that d > (p - 1)/2, we completely deter- 
mine the nonexistence conditions of a solution for the congruence (18) from 
Theorems 1 and 2. 

2. For other primes p, we need only examine s < k from Theorem 5. 
(a) The number of odd primes p that satisfy plk and 1 < d < (p - 1)/2 is 

finite, and it is sufficient to examine whether the congruence (18) has 
a solution in the range n < v for such a prime p, using Lemmas 3, 4, 
Proposition 1, and Corollaries 1, 3, 5, or by a computer search. 

(b) There are an infinite number of odd primes p such that p t k and 1 < d < 
(p - 1)/2, by Dirichlet's Theorem. Since v = 1 for these p, we need only 
examine whether the congruence 

(19) 4Xk + * *+x kN (mod p) 

has a primitive solution (higher powers of pn are not necessary). 
For any prime p > Ak and any integer N, the congruence (19) has a 
solution. When p t N the solution is primitive from Lemma 2. 
Suppose that p > Ak and pIN. When s > 2 the congruence (19) has a 
primitive solution (set xs = 1). When s 2 we completely determine 
whether (19) has a primitive solution from Lemma 4. For primes p where 
(19) has no primitive solution, we completely determine the values N mod 
p2 so that the congruence x, + xk = N (mod p2) has no solution from 
Lemma 3. 
Therefore, we must only examine s < k and odd primes p that satisfy p < 
Ak, p t k and 1 < d < (p- 1)/2 to determine whether the congruenice (19) 
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has a primitive solution using Corollaries 3 and 5, or by a computer 
search. 

We illustrate the algorithm when k = 5. 

Example (k = 5). We examine primes p such that p 15 or d = (5,p - 1) > 1; the 
latter condition is equivalent to p -1 (mod 10). 

1. Among the above primes, 11 is the only one that satisfies d > (p - 1)/2. 
From Theorem 2, we completely determine the nonexistence conditions of a 
solution for the congruence (18). 

2. For other primes, we must only examine s < 5. 
(a) 5 is the only prime that divides k. Note that v = 2 for p = 5. Since 

a5 _ a (mod 5) for any a, the congruence (19) has a solution for any 
s > 2 and any integer N. When s = 2, there exists an integer N such 
that the congruence 

x5 + x 5=N (mod 52) 

has no solution, by Proposition 1. We search for them and obtain N -3, 
4, 5, 9, 10, 12, 13, 15, 16, 20, 21, 22 mod 52. When s = 3, for the above 
values N we find that the congruence 

x 5 + x 5+ x _ N (mod 52) 

has a primitive solution by a computer search. 
(b) Since the bound A5 is 76 + 24 10 = 151.89..., the primes we must 

exam-ilne are 31, 41, 61, 71, 101, 131, 151. Since 5 is odd, the congruence 

x5 + x2- M (mod p) 

has a primitive solution for aniy integer M and any prime p > 151. 
Set p = 31 and s = 2. The pair (k,p) = (5,31) does not satisfy the 
condition in Corollary 1. Therefore, by a computer search, we find that 
for N _ 3, 8, 9, 13, 14, 15, 16, 17, 18, 22, 23, 28 mod 31, the congruence 

x5 + x2-N (mod 31) 
has no solution. Next set s 3. Since (k, s, p) = (5, 3, 31) does not satisfy 
the condition in Corollary 3, we must examine whether the congruence 

(20) xi + X2 + X3 + N (mod 31) 
has a solution for the above values of N by a computer search. We confirm 
that for these values of N, the congruence (20) has a primitive solution. 
Similar procedures are carried out for p = 41, 61, 71, 101, 131, 151, and 
we obtain the results described in Table 2. 

6. TABLES DERIVED BY COMPUTER SEARCH 

Using the algorithm in Section 5, for a fixed k, we obtained the nonexistence 
conditions of the form (s, N mod pT). 

Fortunately, for k = 2 and 3, no computer search is necessary. 
Case k = 2: The bound A2 is 1. The nonexistence conditions (s, N mod pn ) 

are: 
(2,3 mod 4), from Theorem 1, 
(2,pt mod p2) for p -3 (mod 4) and 1 < t < p - 1, from Lemmas 3 and 4, 
(3,7 mod 8), from Theorem 1. 
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Case k = 3: The bound A3 is 7.46 .... The nonexistence conditions (s, N 
mod pn ) are: 

(2, i mod 9), for 3 < i < 6, from Theorem 2, 
(2, i mod 7), for i = 3, 4, from Theorem 2, 
(3, i mod 9), for i = 4, 5, from Theorem 2. 

For other values of k, we completed tables by computer search. We obtained 
the nonexistence conditions for 4 < k < 10 and all primes k < 47. To save 
space, we do not show all of the results; Tables 1, 2 and 3 show the nonexistence 
conditions (s, N mod pn) for k = 4, 5 and 7, respectively. For k = 7, integers 
N mod pn are represented by means of a generator of the cyclic group ((Z/pnf) x 7 

and representatives of the cosets (Z/p,n)X/((Z/pnf)X)7. For example, the first 
row means the congruence 

x7 + x7 N (mod 72) 

has no solution for N -31t (mod 72), where 1 < i < 6 and t = 3, 9, 27, 43. 
Table 4 shows the nonexistence conditions (s, pn) for k = 11, 13, 17, 19. To save 

space, this table shows only the maximal s for each pair (k, pn). For example, the 
row "k = 11, s = 3, pn = 112, 89" means there exist integers N1 and N2 such that 
the congruences 

xii + + xll_ N, (mod 112) 

x11 + + xll N2 (mod 89) 

have no solution for s < 3. 
The computer search was carried out on a DEC Alpha Server 4100/5/400 (400 

MHz, 256 MB memory). We show the CPU times for some values of k: less than 
0.1 seconds for k = 7, approximately 40 seconds for k = 19, approximately 20 
minutes for k = 29, approximately 2 hours for k = 37, and approximately 13 hours 
for k 47. 

TABLE 1. Nonexistence conditions (s, N mod pnf) for k 4. 

[s] Nmodpn1 

2 7, 8 11 mod 13 
6, 7, 10, 11 mod 17 
4, 5, 6, 9, 13, 22, 28 mod 29 
pt mod p2 (1 < t < p-1)* 
37t mod 372 (1 < t < 36) 

3 29t mod 292 (1 < t < 28) 

*: p = 7, 11, 19, 23, 31. 

A4= 41.78... 
mod 2n : see Theorem 1, 
mod 3n , mod 5n: see Theorem 2, 
mod p2 for p > 43, 3 (mod 4): see Lemmas 3 and 4, 
mod p2 for p > 53, 5 (mod 8): see Lemmas 3 and 4. 
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TABLE 2. Nonexistence conditions (s, N mod pn) for k = 5. 

|s| Nmodp| 

2 3, 4, 5, 9, 10, 12, 13, 15, 16, 20, 21, 22 mod 52 

3, 8, 9, 13, 14, 15, 16, 17, 18, 22, 23, 28 mod 31 
7, 16, 19, 20, 21, 22, 25, 34 mod 41 
4, 5, 6, 9, 17, 23, 38, 44, 52, 55, 56, 57 mod 61 

mod ll: see Theorem 2. 

TABLE 3. Nonexistence conditions (s, N mod pn) for k 7. 

s N mod p" 

generator of representatives of 
((Z/pnZ) X)7 (2/pn2) X /((2/p2)X Z)7 

2 31 mod 72 3, 9, 27, 43 mod 72 
12 mod 29 3, 4, 6, 8 mod 29 
37 mod 43 3, 9, 27, 28 mod 43 
14 mod 71 7 mod 71 
40 mod 113 81 mod 113 
28 mod 127 116 mod 127 

3 31 mod 72 9, 27 mod 72 
12 mod 29 8 mod 29 
37 mod 43 27 mod 43 

TABLE 4. Nonexistence conditions (S, pn) for k-11, 13, 17, 19. 

[k s | pnl 

11 2 199, 331, 353, 419, 463, 617 
3 11,289 

4 67 
13 2 132, 131, 157, 313, 443, 521, 547, 599, 677, 859, 911, 937, 1171 

4 79 
5 53 

17 2 239, 307, 409, 443, 613, 647, 919, 953, 1021, 1123, 1259, 1327, 
1361, 1531, 1667 

3 172, 137 
5 103 

19 2 192, 457, 571, 647, 761, 1103, 1217, 14832 1559, 1597, 1787, 
2053, 2129, 2357, 2927 

3 191, 229, 419 

mod 23n for k = 11: see Theorem 2. 
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7. WARING'S PROBLEM IN P-ADIC FIELDS 

Through theoretical analysis and computer search, for several values of k we 
obtained the nonexistence conditions of a solution for the congruence 

xk+ .+xk- N (mod pn). 

These results are closely related to Waring's problem in p-adic fields, namely, the 
problem of representing any p-adic integer by a sum of s kth powers of p-adic 
integers. The problem is equivalent to finding a primitive solution of the congruence 

(21) x+k+ + xk _M (mod p') 

for any rational integer M, except in the case (k, p) = (4, 2) (the least s such 
that any 2-adic integer can be represented as s 4th powers of 2-adic integers is 15, 
however, the least s such that the congruence (21) has a primitive solution for any 
rational integer M is 16). We define the number 1p(k) as the least positive integer 
s such that the congruence (21) has a primitive solution for all rational integers 
M. The number F(k) is defined as max{Fp(k)}, where p runs through all prime 
numbers. 

We utilize the algorithm described in Section 5 for computing F(k). Obtaining 
the value of F(k) is easier than obtaining all nonexistence conditions for k, since 
the bound, up to which we must examine primes p, decreases whenever we find a 
prime p such that Fq(k) < Fp (k) for all primes q < p. Significantly, if we find a 
prime p such that Fp(k) > k in Step 1, then Step 2 is not necessary, by Theorem 5. 

We illustrate how the bound decreases while computing F(34). In Step 1, the 
largest value of Fp (34) is 8 for p = 2. Since 8 <k 34, by Theorem 6, we 
must examine whether there exists a prime p < B34(8) 11203.93... such that 
rp(34) > 9 using Corollaries 3, 5 or by a computer search. The bound decreases 
to B34(10) = 6255.82... when we find that 1103(34) = 10. Note that we must 
examine primes p < A34= 115201.99 ... to obtain all nonexistence conditions for 
k - 34. 

In [4], Hardy and Littlewood considered the number F(k); however, their no- 
tations were slightly different from ours. Tables 5 and 6 correspond to Tables 1 
and 3 in [4], respectively. In the row in Table 5 and in the column in Table 6, "p" 
refers to the least p such that Fp(k) = F(k). There were undecided results (e.g., 
the entry of F(37) was "> 9") and several errors in [4]. The symbols "*" and "t" 
refer to the undecided results and errors in [4], respectively. It took approximately 
6 seconds to obtain Table 5. Note that it took a much longer time to obtain all 
nonexistence conditions for a single value of k (k = 29, as described in Section 6, 

TABLE 5. 1(k) for 3 < k < 36 (corresponding to Table 1 in [4]). 

k 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
F (k) 4 16 5 9 4 32 1 3 1 2 11 16 6- 14 15 64 6 27 4 

P 3 2 1 1 3 7 2 3 5 2 3 2 53 2 9 3 1 2 103 3 t 191 

k 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 
17(k) 25 24 23 23 32 10 26 40 29 29 31 5 128 33 t10 35 t37 

p 5 7 23 47 2 t5 53 3 29 59 31 t373 2 67 103 71 t37 
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TABLE 6. F(k) for 37 < k < 200 (corresponding to Table 3 in [4]). 

k F7(k) p k F7(k) p k F7(k) p k F7(k) p 
37 *9 149 78 84 13 119 119 239 160 *128 2 
38 *9 229 79 *13 317 120 120 241 161 *23 47 
39 39 79 80 t64 2 121 *16 727 162 t243 3 
40 41 41 81 121 3 122 *21 367 163 *21 653 
41 41 83 82 83 83 123 *41 83 164 *83 83 
42 49 7 83 83 167 124 *20 373 165 165 331 
43 t12 173 84 *49 7 125 125 251 166 167 167 
44 44 89 85 *7 1021 126 127 127 167 *5 2339 
45 *15 31 86 86 173 127 *21 509 168 168 337 
46 47 47 87 *29 59 128 512 2 169 *25 677 
47 *10 283 88 89 89 129 t*12 173 170 *20 1021 
48 64 2 89 89 179 130 131 131 171 *180 19 
49 *13 197 90 90 181 131 131 263 172 173 173 
50 t62 5 91 *13 547 132 *67 67 173 173 347 
51 51 103 92 *47 47 133 *7 1597 174 174 349 
52 53 53 93 *17 373 134 134 269 175 *35 71 
53 53 107 94 *18 283 135 135 271 176 t176 353 
54 81 3 95 95 191 136 144 17 177 *21 709 
55 60 11 96 128 2 137 *17 823 178 179 179 
56 56 113 97 *16 389 138 139 139 179 179 359 
57 *14 229 98 98 197 139 *18 557 180 181 181 
58 59 59 99 99 199 140 140 281 181 *19 1087 
59 t5 709 100 125 5 141 141 283 182 *26 53 
60 61 61 101 *16 607 142 *19 569 183 183 367 
61 *11 367 102 103 103 143 *18 859 184 *47 47 
62 *12 373 103 *16 619 144 *73 73 185 *9 149 
63 63 127 104 t53 53 145 *29 59 186 186 373 
64 256 2 105 105 211 146 146 293 187 *22 1123 
65 65 131 106 107 107 147 171 7 188 *22 1129 
66 *67 67 107 *15 643 148 149 149 189 189 379 
67 *12 269 108 *109 109 149 *8 1193 190 191 191 
68 68 137 109 *6 1091 150 151 151 191 191 383 
69 69 139 110 121 11 151 *19 907 192 256 2 
70 71 71 111 111 223 152 *32 2 193 *21 773 
71 *6 569 112 113 113 153 153 307 194 194 389 
72 73 73 113 113 227 154 *23 23 195 *65 131 
73 *16 293 114 114 229 155 155 311 196 *197 197 
74 74 149 115 *23 47 156 169 13 197 *5 3547 
75 75 151 116 116 233 157 t*7 1571 198 199 199 
76 *16 2 117 *39 79 158 158 317 199 *25 797 
77 *14 463 118 t*17 709 159 t53 107 200 200 401 
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took approximately 20 minutes). The results in Table 6 were obtained in approxi- 
mately 33 hours. Almost all CPU time was for k = 167 and 197 (approximately 9 
hours for k = 167 and approximately 23 hours for k = 197). 

Hardy and Littlewood proved that F(k) > 3. After declaring they could not 
prove that F(k) > 4, although no case of F(k) = 3 was known, they wrote (p. 539 
in [4]): 

We have explored the possibilities F(k) = 3 and F(k) = 4 in the range 
2 < k < 3000. Our results are that F(k) > 3 in all cases; and F(k) > 4 
except for k = 2, 3, 7, 19, for which it is 4, and possibly (but very 
improbably) for k= 1163, 1637, 1861, 1997, 2053. 

Therefore, we computed F(k) for k = 1163, 1637, 1861, 1997, 2053. In approxi- 
mately one minute, we obtained 

F37217(1163) = 6, F62207(1637) = 7, F74441(1861) = 5, 
F87869(1997) = 5, F94439(2053) = 5, 

where the primes p = 37217, 62207, 74441, 87869, 94439 were the least primes 
satisfying the condition p 1_ (mod k) for k = 1163, 1637, 1861, 1997, 2053, 
respectively. That is, F(k) > 6, 7, 5, 5, 5 for k = 1163, 1637, 1861, 1997, 2053, and 
we confirmed that F(k) > 4 in the range 19 < k < 3000. 
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